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Abstract Bend-twist coupling is a property of certain special-
ly designed composite beams that when subjected to loading
conditions that would normally result in pure bending, under-
go both bending and twisting. This phenomenon is called
bend-twist coupling. To fully characterize the degree of
bend-twist coupling in the beam, shear center per unit length
(ey/L) must be determined. This paper proposes an experimen-
tal method for quantifying ey/L. The specific method for
manufacturing these composite shafts is detailed. A special
apparatus was constructed to load the tip of a cantilever sam-
ple with an adjustable torque. Digital image correlation (DIC)
was used to measure tip rotation and deflection. From these
measurements shear center values were determined.
Repeating this process for different shaft lengths and orienta-
tions allows for a final ey/Lmeasurement. Techniques are pro-
vided to reduce the various uncertainties in these measure-
ments. The experiment utilizes three dimensional DIC, a rigid
boundary condition such as a vice to simulate a cantilever
condition, and an adjustable moment arm on which to load
the specimen. The special case of a cylindrical carbon fiber
beam is presented here, but the experimental methods can be
generalized to tapered beams, non-circular cross-sections, and
other orthotropic materials. The results are compared against
finite element and analytical predictions. The final average
experimental ey/L for all four shafts is 8 % higher than what
the analytical method and FEA predict.
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Nomenclature
CF Carbon fiber
COV Coefficient of variation
CTE Coefficient of thermal expansion
DIC Digital image correlation
E1 Young’s modulus in the fiber direction
E2 Young’s modulus perpendicular to the fiber direction
ey Shear center along the horizontal y axis perpendicular

to the shaft
FEA Finite element analysis
L Length of cantilever shaft free to rotate
S16 Extension-shear coupling term defined as η/G
X Parallel to shaft with the origin at the fixed end of the

cantilever
Y Horizontal to the shaft with the origin at the fixed end

of the cantilever
Z Vertical to the shaft with the origin at the fixed end of

the cantilever
η Coefficient of mutual influence

Introduction

First consider the more common case of an isotropic
cantilevered beam. A transverse, eccentric load applied at
the tip will cause the beam to bend in proportion to the load,
and twist in proportion to the torque (load times moment arm).
This property can be altered if the cross-section of the beam is
changed to an asymmetric geometry. A classical example of
this is a BC^ channel beam as illustrated in Fig. 1 [1].
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Load applied at the tip’s geometric centroid results in the
beam twisting. This can appear counterintuitive the first time
it is seen. A corollary to this is if a load is applied at the
shear center, a certain distance from the centroid, the beam
will not twist. In other words, the beam is being subjected to
a torque that counteracts its natural tendency to twist. This
location is called the shear center. It is the distance from the
geometric centroid where a point load would not cause
twisting. It defines the reference point from which all torque
moment arms must be calculated to predict the degree of
resulting twist.

In the vast majority of beams the material is isotropic and
the cross-section’s geometry is symmetric about both
centroidal axes resulting in a shear center of zero (coincident
with the centroid). Asymmetric beams such as the BC^ chan-
nel with nonzero shear centers are said to possess bend-twist
coupling. The causes of this isotropic bend-twist coupling
are the unbalanced shear flows present in the cross-section
which require the beam to twist in order to balance internal
forces [1].

A second way to create bend-twist coupling is by
orienting an orthotropic material asymmetrically. While the
fundamental cause is different, the outward appearance of
bend-twist coupling and an off-axis shear center remains
the same. For this reason the terminology from the classical
isotropic case is borrowed to interpret the anisotropic case

presented here. Consider a cantilevered plate, shown in
Fig. 2, consisting of orthotropic material that has greater
stiffness along the fiber direction than the transverse
direction.

The cause of the bend-twist coupling is not unbalanced
cross-sectional shear flows but the extension-shear coupling
resulting from the off-axis fiber orientation. Load tends to
follow the path of greatest stiffness and, for an anisotropic
material asymmetrically oriented, this results in shear strain
for the bent plate. The half of the beam above the neutral
axis experiences extension coupled with shear to the left.
The other half of the beam below the neutral axis experi-
ences compression coupled with shear to the right. With the
top half shearing to the right and bottom half shearing to the
left, the beam is experiencing shear equivalent to a counter-
clockwise rotation. The beam bends so it must twist. This
property is reversible: pure torque applied to the beam will
result in the beam bending. The plate geometry can be ex-
panded about the neutral axis to hollow cross sections such
as cylinders. This conceptual progression is shown in Fig. 3
with the fully realized example in Fig. 4. This cylindrical
design is more similar to the bend-twist coupled composites
studied previously [2, 3]. Much of the research in composite
bend-twist coupling involves shapes such as wind turbine

Fig. 1 Shear center resulting from shear flows in an isotropic beam with
an asymmetric cross-section

Fig. 2 Shear center resulting from bend-twist coupling in a composite
beam with asymmetric fiber orientation
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blades [4, 5], marine propellers [6], and wings [7]. In these
cases the goal is to align the shear center with the aerody-
namic center. The property can also be used to prevent shear
buckling [8]. Of particular concern here, is the potential
application for composite shafts subjected to off axis loading
such as golf clubs.

Interpreting this effect using laminate plate theory, this
property arises from a nonzero extension-shear coupling term
(S16). The coupling term is defined as

S16 ¼
η16;1
G16

ð1Þ
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The laminate is homogenized as an anisotropic material and
uses equivalent elastic constants calculated from the original
[A] matrix. Here, η is the coefficient of mutual influence.
Figure 5 demonstrates how η varies as a function of the fiber
direction relative to the beam axis [7–9].

Note that the more common case of symmetric ply angles
(0° and 90°) results in an η of zero. This curve is unique for
each composite material system. For every combination of
material properties (E1, E2, G12, etc.) there is an optimal lay-
up that maximizes η and therefore the bend-twist coupling.
This is typically between 18° and 23° for the carbon/epoxy
material system used in this experiment.

Equation 2 makes it clear how shear strain can result in
the absence of shear stress so long as the S16 term is
present to multiply the longitudinal stress. In parallel re-
search by Sankar et al. [10], this analytical work was
developed further for the cylindrical case and results as
a final equation for predicting the shear center for a given
composite properties and orientations. Details of the der-
ivation of equation 3 are presented in the Appendix sec-
tion of this manuscript.

ey ¼
2 ηxs;x L

π 1þ 8

π2
−1

� �
ηx;xsηxs;x

� � ð3Þ

Where:

ηxs;x
Gxs

¼ ηx;xs
Ex

ð4Þ

Fig. 3 Conceptual transition from plate to cylinder

Fig. 4 Shear center resulting from extension-shear coupling in composite
cylinder Fig. 5 η as a function of ply angle for carbon/epoxy [9]
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In the above equation, what becomes apparent is that the shear
center is now a function of beam length; it increases linearly
with shaft length. This differs from the classical isotropic case
where shear center was solely a cross-sectional property. This
raises some interesting possibilities. A shear center of any
length can be achieved if the beam is allowed to be long
enough. Conversely, if the beam length is fixed, no amount
of increasing the diameter will alter the shear center. The only
way shear center can be altered is by changing the coupling
coefficient η.

This dimensionless number, shear center per unit length,
fully specifies the degree of bend-twist coupling achieved in a
composite shaft. Any experimental method seeking to charac-
terize the bend-twist coupling of a beam must concern itself
with accurately estimating this value. The ratio ey/L fully in-
corporates the unique combination of material properties and
fiber orientations that define the shaft.

The experiment presented here utilizes DIC to measure tip
deflections and rotations. Another method for locating the
shear center of a beam is to measure the deflections with a
pair of LVDTs. Point bending tests have also been applied for
locating the shear center, called the torsional or elastic axis
when referring to wings, on insect wings and other artificial
wings [11, 12]. The advantage to using DIC for measuring tip
deflections is that all three components of tip displacement u,v,
w can be measured. DIC also makes possible direct measure-
ment of both in-plane and out-of-plane rotation while main-
taining sufficiently high resolution.

Presented here is a series of steps for experimentally deter-
mining ey/L. Many of the steps were repeatedmultiple times in
order to prevent uncertainty accumulating in the final ey/L
value. The results were then compared to values predicted
by the analytical model given above and also with a finite
element model [10]. Experimental validation of these models
makes predictions possible. This is a necessary step in the
optimization of bend-twist coupling for specific applications.

Experimental Procedures

Fabrication of Composite Shafts

The cylindrical composite shafts were constructed of four pre-
preg unidirectional carbon fiber layers with fiber orientations
specified as [0/23/23/0]T as shown in Fig. 6. Each number
designated the fiber orientation relative to the shaft axis. For
example, a 0° layer consisted of the fibers oriented parallel to
the shaft. While these 0° layers did not contribute to bend-
twist coupling, they were added to increase flexural rigidity,
prevent delamination, and lessen warping from residual
strains. The inner and outer 0° layers were wrapped a full
360° around the shaft (plus a few extra degrees for overlap).

The overlap was necessary to prevent delamination during the
lay-up and curing as some thermal and chemical shrinkage
occurs. The two middle 23° layers were responsible for the
bend-twist coupling and were chevron patterns. They were
called this because they appeared as chevrons when viewed
from the side as shown in Fig. 4. This meant that +23° covered
the top half of the cylinder and −23° covered the bottom half.
They each wrapped 180° around the shaft with a few extra
degrees of overlap. Through a combination of iterative pro-
gression, closed-form predictions, and FEA models the ideal
chevron orientation for maximizing the degree of bend-twist
coupling was determined to be between 18° and 23° for the
carbon fiber used. For these reasons the lay-up [0/23/23/0]T
was ideal for making simple shafts possessing both bend-twist
coupling and structural integrity. The optimal angle of 23° was
highly dependent on material properties E1, E2, and G12 mak-
ing it necessary to know the precise elastic constants of the
composite lamina. The manufacturer would not release the
carbon fiber and matrix composition, so this testing was done
in our lab. The curing cycle is shown in Fig. 6.

Because the majority of fibers lied in the longitudinal di-
rection and the CTE of the epoxy matrix was much less than
that of the carbon fiber, the curing process caused the laminate
to grip the mandrel very tightly upon cooling. These compres-
sive forces were so strong that all original attempts to extract

Fig. 6 Schematic of ply lay-up and curing cycle
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the cured shafts from the cylindrical mandrel resulted in the
shafts fracturing.

To solve this problem a special mandrel was constructed to
facilitate shaft extraction. The mandrel was 12.7 mm (1/2 in.)
diameter and could be separated into three pieces longitudi-
nally as in Fig. 7. This allowed for the gradual removal of the
inner mandrel and then the inward collapse of the outer two.

The mandrel was constructed by soldering a sandwich of
9.5 mm (3/8 in.) by 25.4 mm (1 in.), 3.2 mm (1/8 in.) by
25.4 mm (1 in.), and 9.5 mm (3/8 in.) by 25.4 mm (1 in.) steel
rectangular stock and then carefully turning them in a lathe
until a single 12.7 mm (1/2 in.) diameter mandrel was formed.
The tin solder was then melted out. The mandrel had a hole
drilled through all three layers for a set screw to hold the layers
in place. The middle 3.2 mm (1/8 in.) thick layer was kept
longer with its own hole for extracting it. When the three
layers were being combined, a thin sheet of Teflon® was
added between each mandrel layer to reduce friction forces
when it was time to remove them from the cured shaft. The
mandrel was long enough to create shafts 469.9 mm (18.5 in.)
in length. The longer the shaft, the less sensitive of ey/Lwas to
lengthwise manufacturing error, but the more difficult it was
to machine the mandrel in a lathe.

The lay-up process began by combining the three mandrel
pieces together in the order that they were turned and fixing
them in place with the set screw. The outside of the mandrel
was then wound in Teflon® to prevent the epoxy from adher-
ing to the mandrel. The Teflon® must be tightly wound or
epoxy seeps through the gaps of the Teflon®. The four layers
of carbon fiber were cut out of the carbon fiber sheets. Two
pieces were oriented in the 0° direction, and four half pieces
were oriented at 23°. A protractor and straight edge were used
for measuring the angles. Each successive layer was slightly
larger to account for the increasing inner diameter as each
layer was added. The layers were then wrapped around the
mandrel. The interface at 180°, where the two 23° layers met,
hold special significance. This tip of the chevron demarcated
the reference line that, when oriented horizontally, produced
the maximum shear center. The physics of this is explained in
the Experimental Set-Up. For this reason it was clearly
marked on the outside of the shaft in silver marker.

Two layers of plastic shrink wrap were then wound around
the shaft to provide the compressive forces necessary for the
carbon fiber to consolidate. After the heat cycle, Fig. 6, the
shaft was removed from the mandrel by slowly extracting the
middle layer of the three-piece mandrel. To gradually apply
the axial force needed to remove the inner mandrel layer, a
screw jackmethodwas used to provide the necessary mechan-
ical advantage. Once the inner layer was freed, the outer two
layers collapsed inward and the carbon fiber shaft was easily
removed.

Experimental Set-Up

The overall experimental set-up is shown in Figs. 8 and 9.
Once the carbon fiber shaft was completed, a method was
needed to load the beam’s tip with an adjustable off-axis mo-
ment arm. This adjustable moment arm needed tomaintain the
same downward tip load but alter the amount of torque being
applied. In this way the shear center was calculated as the
moment arm length which resulted in zero tip rotation. To
serve this function a special fixture was machined. The load-
ing fixture, shown in Fig. 9, gripped the end of the shaft while
a special block was free to slide horizontally. A constant
weight was hung from this block to adjust the torque applied
to the tip of the shaft.

To give the fixture something to grip to, a steel insert of
64 mm length and 13 mm diameter was adhered with epoxy
into one end of the shaft so that 17 mm of excess steel insert
exited the shaft. When recording the beam length during test-
ing, it was important to subtract the length of the portion
epoxied to the steel insert, as this portion was nearly rigid.
After the loading fixture was added, a flat target was then
adhered to the face of the steel insert. This flat target,
Fig. 10, had been spray painted with a black speckle pattern
and a white background. The average speckle size was on the
order of 0.1 mm. The speckling was for providing the DIC
system with a surface to measure tip displacement and rota-
tion. The cross-sectional ends of the shaft were not required to
be perfectly flat because they were free and unloaded.

The end of the shaft without the steel insert was clamped
tightly in the vice to create the fixed end of the cantilevered
beam. Two pieces of aluminum with a cylindrical core were

Fig. 7 The three pieces of the mandrel separated and combined Fig. 8 Schematic of the experimental set-up
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machined to grip the contours of the shaft in the vice. Three
inches of shaft were clamped to ensure a near fixed condition.
The loading fixture was attached to the steel insert on the
opposite end. The fixture was oriented as horizontal as possi-
ble using a level. A weight of 300 g was suspended from a
string attached to the sliding block of the fixture. The weight

was enough to clearly show tip deflection and rotation within
the resolution of the DIC but not so large as to cause second
order effects from excessive curvature. The camera’s depth of
focus was set accurately to capture the tip with and without the
300 g present.

Next, the cameras in the DIC system were calibrated. A
two-camera, 3D setup was needed because there were out-
of-plane displacements. The specification of the camera was
a Kreuznach Xenoplan CCD camera lens 1.9/35-0511. An
LED flood light was placed behind the cameras to provide full
and even lighting. The reference image was taken with the
loading fixture present but the 300 g weight absent. Taking
the reference image with the loading fixture present accounts
for any bending and twisting that resulted from the fixtures
own weight. Doing this did not alter the apparent location of
the shear center. The principle of superposition allowed for
this assumption and was valid within first order effects. The
camera calibration results are shown in Tables 1 and 2.

Since tip rotation varied linearly as a function of moment
arm for a constant load, a minimum of two points was
needed to fully define that line. There was a very small
amount of uncertainty in these measurements therefore, to
accurately determine the shear center location, six different
loading points were chosen giving six points to plot a best
fit line. At each loading point DIC image pairs were taken.
For these loading points the same 300 g weight was hung
from six different evenly spaced positions of the sliding
block. A caliper was used to measure each moment arm
length. Care was taken to wait until all tip vibrations damp-
ened before taking images.

Fig. 9 Experimental set-up and loading fixture

Fig. 10 Flat, speckled target for DIC

Table 1 Camera calibration

Camera 1 Camera 2

Center x: 1158.78 pixel 1226.81 pixel

Center y: 976.05 pixel 1082.69 pixel

Focal length x: 11829.6 pixel 11954.9 pixel

Focal length y: 11829.1 pixel 11950.9 pixel

Skew: −1.24791 1.44341

Kappa 1: −0.232567 −0.294215
Kappa 2: 0 0

Kappa 3: 0 0

Table 2 Camera
transformation Alpha: 0.549386°

Beta: −51.0754°
Gamma: −0.312273°
Tx: 212.651 mm

Ty: 0.306792 mm

Tz: 108.264 mm

Baseline: 238.624 mm
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This set of six measurements produced one shear center
value. Depending on how the reference line was oriented,
the measured shear center would change. The reference line
indicated the positioning for maximum shear center when ori-
ented to the left or right. When facing upward or downward
the shear center was zero as symmetry gives no reason for it to
be otherwise. Figure 11 illustrates how this relationship is
sinusoidal because the measured value is just the projection
of the actual value onto the horizontal plane. Because of this,
the measured shear center was highly sensitive to the orienta-
tion of the plane of symmetry with respect to the moment arm.
There was a large risk that the reference line was not perfectly
horizontal or even faithful to the underlying chevron pattern.

To correct for this uncertainty, eight shear centers were mea-
sured for eight evenly spaced global rotations. After each set of
six images was taken, the shaft was rotated 45° and the loading
fixture was realigned to be level with the ground. This elimi-
nated the risk of not perfectly orienting the shaft to maximize
the shear center. This set of eight was repeated at two different

beam lengths for each shaft. To reduce the beam length the
shaft was slid farther into the vice before it was tightened.

It should be noted that since the sliding block was moved
after the reference image was taken, it had a minor effect on
the amount of apparent rotation of the shaft. This degree of
distortion meant that the actual shear center was slightly larger
than the apparent measured shear center in proportion to how
much the sliding block weighed relative to the hanging mass.
This came out to 1.8 %. All data were adjusted accordingly.

Post-processing

Two steps of post-processing were performed on the images
taken during the experiment. The standard analysis used an
image of the tip with the fixture but not the hanging weights as
the reference image. The six images with a constant load but
shifting moment arm were analyzed relative to this reference
image to determine how the six different moment arms pro-
duced six different tip rotations. The tip rotations were derived
using VIC Snap’s in-plane rotation feature. Examples of the
full-field displacements and in-plane rotations are shown in
Fig. 12. The step and subset size were 5 and 42 pixels, respec-
tively. These sizes were chosen using guidelines from the
Correlated Solution user’s manual and from experience that
has shown these setting to be appropriate. Each of the six

Fig. 11 Shear center’s relation to this angle is defined by the cosine
function

Horizontal Position (mm)

V
e
r
ti
c
a
l 
P
o
s
it
io
n
 (
m
m
)

U Field

0 10 20

0

5

10

15

20

25

disp. (mm)

0.05

0.1

0.15

0.2

0.25

0.3

Horizontal Position (mm)

V
e
r
ti
c
a
l 
P
o
s
it
io
n
 (
m
m
)

V Field

0 10 20

0

5

10

15

20

25

disp. (mm)

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

Horizontal Position (mm)

V
e
r
ti
c
a
l 
P
o
s
it
io
n
 (
m
m
)

W Field

0 10 20

0

5

10

15

20

25

disp. (mm)

-0.04

-0.02

0

0.02

0.04

Fig. 12 Full field displacement of the flat target
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images taken had amoment arm value that was recorded using
a caliper and a measure of tip rotation determined by DIC.
This collection of six images was then plotted with tip rotation
as a function of moment arm, an example being Fig. 13.

A best fit line was then produced using values from these
six images. The shear center was the x-intercept of this line as
the x-axis indicated zero degrees of rotation, the definition of
shear center. The slope was a measure of the shaft’s torsional
rigidity. The R2 value was recorded as a measure of accuracy.
This process was repeated eight times, giving eight different
shear center measurements for eight different shaft orienta-
tions at 45° intervals.

While nominally the shaft was rotated 45°, the exact value
was important and could be determined using DIC. This was
done using a second meta-analysis of the DIC images. This
time all eight unloaded reference images were analyzed. One
reference image was chosen to be the meta-reference image
and the degrees of rotation were determined relative to this
metric. The VIC-Snap software had difficulty processing the-
se images because of the large 45° rotations and the incidental
rigid body movements. To help the software perform, three
reference points within the speckled target were manually se-
lected for each image. The step and subset size were 5 and
32 pixels, respectively.

Each set resulted in a different shear center that could be
plotted along a sinusoid with shear center on the vertical axis
and global shaft rotation on the horizontal axis. The shaft
orientation values being precisely determined from the meta-
analysis. The reason the curve was sinusoidal was because the
measured shear center was the actual shear center projected
onto the horizontal axis as previously shown in Fig. 11.
Specifically, this was a negative sine function the way it was
plotted and the angles were defined.

A sinusoidal curve was then fitted to the data points to
minimize the sum of squared errors as in Fig. 14. The sine
wave was allowed to phase shift up to 180° in either direction.
This was done so that the original reference orientation did not
matter. For the sake of experimental consistency, the reference
image was always chosen with the reference line pointing
upward. The sine wave had a period of 360° because the shaft
had 360° of radial symmetry. The sine wave was centered
about the x-axis (no parameter allowed any upward or down-
ward shift) because there was no reason that the shear center
should change whether loaded upward or downward. The
equation is shown below. The variables A and φ are given free
range with the goal of determining the pair of values that
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Fig. 14 A best fit sine wave with amplitude as the measure of bend-twist
coupling
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Fig. 15 Shear center as a function of beam length, y=0.1153x, R2=0.89

Table 3 Sample A shear
center values Beam length (mm) Shear center (mm)

121 13.0

134 16.2

145 23.3

169 23.2

192 19.7

218 20.8

230 26.3

243 31.9

266 34.1

301 35.4

335 38.2

369 41.1

403 43.0

Fig. 16 One shaft repeated seven times at one location, mean=33.0 mm,
std=1.3 mm
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minimizes the sum of squared residuals between the best fit
and the eight data points.

Y ¼ −Asin θþ φð Þ ð5Þ

The amplitude of the sine wave was the second parameter
that was allowed to change freely. The amplitude represented
the maximum shear center that could be obtained when the
shaft was oriented with the reference line perfectly horizontal.
It was this value that defined the shear center for this beam
length.

Shear center amplitude was a linear function of the length
of the beam. For this experiment, the shear center amplitude
was calculated at multiple beam lengths. A graph was then
madewith shear center on the vertical axis and beam length on
the horizontal axis. A best fit line was then plotted through the
origin and the two shear center values. The slope of this line,
shear center per unit beam length, was the defining character-
istic of each beam that fully defined its bend-twist coupling.
The experiment was designed to minimize the uncertainty in
this final value given available resources.

To measure the uncertainty in the manufacturing process,
these series of tests were performed on four different shafts.
Nominally the shafts had the same design. Two of the shafts
had extra tests performed. One shaft was specially tested to
measure variance in ey/L along beam length. The second shaft
was repeatedly tested at the same beam length to quantify
uncertainty in the measurement of shear center.

Results

The first series of tests were designed to examine how shear
center varies as a function of beam length. The same shaft was
tested to find the shear center for 13 different beam lengths.

The 13 different lengths for a single shaft were achieved by
sliding the shaft farther into the vice so that the length of the
shaft acting as a cantilever beam changed. Each point repre-
sents the amplitude of a fitted sine wave for that beam length.
The results are shown in Fig. 15 and detailed in Table 3. The
prediction that shear center would increase linearly as a func-
tion of length is verified. The shear center increases on aver-
age 0.12 mm for every 1 mm of added beam length.

The variance between data points and fit is 11 % and rep-
resents a combination of measurement uncertainty and length-
wise uncertainty. Much of the lengthwise uncertainty is in the
manufacturing step. Manufacturing errors result in an under-
lying variance in the degree of bend-twist coupling, η, which
is averaged out as the measured beam length increases, like
regression to the mean. This explains why the variance is
greatest when the beam is shortest and then decreases as the
beam elongates; it is being averaged out. During the lay-up,
carbon fiber strips are wrapped around the mandrel to form
chevrons. Ideally each region covers exactly 180° and does
not shift lengthwise along the mandrel. In practice there are
several degrees of variance as the layers are added. This large
sensitivity to ply angle agrees with the results of the sensitivity
test discussed below. This is why shafts of this length have
been chosen, as it is sufficiently long to diminish these effects,
but still short enough to fit on a well turned mandrel.

The next series of tests were designed to isolate the uncer-
tainty in the measurement of shear center. A second shaft was
tested repeatedly at a constant beam length. Each time the
series of eight sets were performed to determine the shear
center amplitude at a constant beam length of 323 mm. A
second point was tested at 277 mm. The seven identical tests
resulted in a mean shear center of 33.0 mm with a standard of
deviation of 1.3 mm (COV of 4 %). The graph in Fig. 16
includes the standard of deviation to help illustrate the mea-
surement uncertainty. This 4 % COV, while not perfect, is
much lower than the 11 % in Fig. 15 which resulted from both
manufacturing and measurement uncertainty. The values are
detailed in Table 4.

Table 4 Sample B shear
center values Beam length (mm) Shear center (mm)

277 28.2

322 33.0

322 33.1

322 33.5

322 34.0

322 31.0

322 31.4

322 34.8

Table 5 Sample C shear
center values Beam length (mm) Shear center (mm)

277 26.7

322 36.0

Table 6 Sample D shear
center values Beam length (mm) Shear center (mm)

277 16.5

322 27.1

Table 7 Average shear
center per unit length for
each shaft tested

Sample Shear center per unit
length (mm/mm)

A 0.119

B 0.102

C 0.104

D 0.072
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Twomore shafts were tested at 277 and 322 mm to observe
the amount of variance across separate shafts. The shafts nom-
inally have the same dimensions, but manufacturing errors can
result in different shear centers to an extent greater than that
observed lengthwise along the same shaft. These final values
represent the cumulative uncertainty of measurement, length,
and shaft variance. The average across the four shafts was an
ey/L of 0.099 with a standard of deviation of 0.018 giving a
COVof 18 %.

The average shear center value summarizes the results of
the 25 sets of experiments performed. These experiments are
detailed in Tables 3, 4, 5, and 6 with individual shaft averages
in Table 7. The goal of performing multiple experiments is to
average out as much uncertainty as possible. The overall shear
center value, ey/L=0.099, is then compared to the predictions
made by the analytical expression given in equation 3 and
FEA.

A finite element analysis was performed using the commer-
cial software Abaqus using quadrilateral shell elements with
eight nodes per element, Fig. 17. Each node had six degrees of
freedom. Nominal element size was 1.7×3.5 mm, and the
number of elements varied from 830 to 2760 depending on
the shaft length. There were 24 elements in the circumferential
direction. Shell elements were chosen because the shaft thick-
ness was small compared to the radius (r/t=9.9). The elastic
constants used were based on testing performed on the carbon
fiber epoxy laminate in our laboratory. Three simple laminates
were tested in various loading directions. The material prop-
erties were determined to be: E1=81.0 GPa, E2=5.45 GPa,
G12=3.0 GPa, G13=3.0 GPaG23=2.0 GPa, ν12 =0.3, and ply

thickness=0.16 mm. These were the same values used in the
analytical solution. The results are shown in Table 8. The
agreement between the analytical method and FEAwas nearly
exact. The experimental results showed an ey/L 8 % higher
than predicted.

The most likely cause for exceeding the predicted ey/L
value is that the three inches of shaft clamped in the vice are
twisting, thus not an ideal clamped cantilever condition. The
analytical and FEA models assume that the shaft completely
stops twisting at the boundary. In reality some twisting con-
tinues into the clamped portion due to finite friction forces.
This effectively lengthens the portion of the beam free to twist
by zero to three inches. This would increase the experimental
ey/L value in proportion to how much it increases the effective
beam length. This is consistent with exceeding the analytical
and FEA predictions.

Using the analytical prediction of shear center, a sensitivity
test was performed to measure the relative importance of each
input on the determination of shear center. Shown in Fig. 18,
the results indicate obtaining an accurate ply angle was the
most important step. The second most critical value was the
shear modulus G12, with E2 in third. Ply thickness did not
affect shear center in this analysis because each layer had the
same thickness and the cylinder was assumed to have negli-
gible thickness as compared to the radius (r/t=9.9). The ply
angle θ ’s effect on shear center was asymmetric because θ
moves the value of η along the curve in Fig. 5. This shows that
extra resources and effort should be directed towards
guarantying that the physical ply angles match the desired
nominal angles, and thatG12 and E2 are known to the greatest
possible accuracy. Not shown here was the sensitivity to beam
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Fig. 17 FEA model of shaft and mesh convergence

Table 8 Comparison of
techniques Sample Shear center per unit

length (mm/mm)

Experimental 0.099

Analytical 0.092

FEA 0.092
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Fig. 18 Relative effect each material property had on shear center
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length which would be a one to one ratio, by far the most
sensitive parameter. The beam length was the measured por-
tion of the shaft not gripped in the vice and not adhered to the
steel insert i.e., the length of shaft free to twist. In reality there
may have been some twisting of the shaft in the vice, while the
analytical and FEA models assume absolute rigidity at this
boundary region. This made the effective beam length longer
than what had been recorded and would lower the experimen-
tal ey/L. This would bring greater agreement with the
predictions.

Conclusion

A series of techniques was presented for experimentally locat-
ing the shear center of a composite shaft with a novel set up. A
dimensionless number for the shear center per distance unit
length was calculated. This value fully quantified the degree
of bend-twist coupling in the shaft. The experimental steps
were repeated multiple times in order to minimize the uncer-
tainty present at that step. Currently, there is 4 % variance in
the measurement of shear center, 7 % variance in shear center
along the length, and 6 % variance in ey/L across separate
shafts. The final average ey/L for all four shafts is 8 % higher
than what the analytical method and FEA predict. Part of this
8 % difference arises due to the uncertainty in the construction
of shafts themselves implying more numbers should be tested.
Agreement with the predictive model is sufficiently close to
begin with using the model for design and optimization. If
greater experimental accuracy is needed there should be more
data points to be tested along the length of each shaft and a
larger number of shafts to be constructed and tested. If greater
model fidelity is needed there should bemore thorough testing
ofG12, E2, and the effective beam length. The shafts were able
to achieve shear centers one tenth of their length (ey/L=
0.099), despite having only half the plies oriented at 23° to
contribute to bend-twist coupling. Shear center per length
values greater than this should be achievable.

Appendix

Consider a thin-walled tube with the tube axis parallel to the x-
axis. The mean radius of the tube is R and the wall thickness
h<<R. The tube is made of two anisotropic materials - top half
(0<θ<π) is made ofMaterial 1 and the bottom half (π<θ<2π)
is of Material 2. We assume that the tube is in a state of plane
stress normal to the radial direction n, see Fig. 19, such that
σnn=τnx=τns=0. Furthermore, we assume the hoop or circum-
ferential stress σss=0. Thus the two significant stresses are the
axial stress σxx and the shear stress τxs. We assume that the
tube deforms such that plane sections remain plane and

normal to the tube axis as in Bernoulli-Euler beam theory.
Then the displacement field can be written as

u x; y; zð Þ ¼ u0 xð Þ−y dv0
dx

−z
dw0

dx
v x; y; zð Þ ¼ v0 xð Þ
w x; y; zð Þ ¼ w0 xð Þ

ð6Þ

where u0, v0 and w0 are the deflections of the beam axis. The
axial strain takes the form

εxx ¼ ∂u
∂x

¼ ∂u0
∂x

−y
d2v0
dx2

−z
d2w0

dx2¼ εxo þ yκy þ zκz

ð7Þ

where κy and κz are the curvatures. But we assume the shear
stress is uniform and given by

τ xs ¼ T

2πR2h
¼ τ0 ð8Þ

where T is the torque acting on a cross section.
The constitutive relation for both materials can be written

in the form [13]

εxx
γxs

� �
¼

1

Ex

ηxs;x
Gxs

ηx;xs
Ex

1

Gxs

2
64

3
75 σxx

τ xs

� �
¼ S11 S16

S16 S66

" #
σxx

τ xs

� �
ð9Þ

Then from (2), (3) and (4) we obtain

σxx ¼ Exεxx − ηx;xsτxs
¼ Ex εx0 þ yκy þ zκz

� �
− ηx:xsτ0

ð10Þ

The force and bending moment resultants are defined as

P;My;Mz

� � ¼Z
A

σxx 1; z;−yð ÞdA

¼
Z2π
0

σxx 1;Rsinθ;−Rcosθð ÞRhdθ
ð11Þ

where the integration is performed over the cross section of
the tube.

Fig. 19 Cross section of the tube and the coordinate system
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Performing the integration we obtain relations between the
force and moment resultants and deformations:

ExA
AR

π
ΔEx

AR

π
ΔEx ExI

2
64

3
75 εx0

κz

� �
¼ P

My

� �
þ Aηx;xs

2R2hΔηx;xs

( )
τ0

ExIκy ¼ −Mz

ð12Þ

The average torsional rotation ψx is calculated as follows.

Let us define the average unit angle of twist ϕ ¼ dψx=dx. The
shear strain can be written as

γxs ¼ Rϕþ 1

R

∂u
∂θ

ð13Þ

Then the average unit angle of twist is obtained as

ϕ ¼ 1

2π

Z 2π

0

ϕdθ

¼ 1

2π

Z 2π

0

γxs
R

dθ−
1

2π

Z 2π

0

1

R2

∂u
∂θ

dθ

¼ 1

2πR

Z 2π

0

γxs d θ

ð14Þ

From the constitutive relation (4) the shear strain at a point on
the circumference of the tube can be written as

γxs ¼
ηx;xs
Ex

σxx þ τxs
Gxs

ð15Þ

Substituting for σxx from (5) into (10) and then substituting for
γxs from (10) into (9) the average unit angle of twist can be
derived as

ϕ ¼ ηx;xs
R

εx0 þ
Δηx;xs
π

κz þ 1

R
−

η2x;xs
Ex

� �
þ 1

Gxs

" #
τ0 ð16Þ

where

η2x;xs
Ex

 !
¼ 1

2

η 1ð Þ
x;xs

� 	2
E 1ð Þ
x

þ
η 2ð Þ
x;xs

� 	2
E 2ð Þ
x

0
B@

1
CA

1

Gxs

¼ 1

2

1

G 1ð Þ
xs

þ 1

G 2ð Þ
xs

 ! ð17Þ

It is assumed +α for the top half of the tube (Material 1)
and −α for the bottom half (Material 2).

Then equations (12) and (16) can be simplified as

ExAεx0 ¼ P

ExIκz ¼ My þ 4R2hη 1ð Þ
x;xsτ0

ExIκy ¼ −Mz

ϕ ¼ 2η 1ð Þ
x;xs

π
κz þ 1

R

1

Gxs

−
η 1ð Þ
x;xs

� 	2
Ex

2
64

3
75τ0

ð18Þ

From the above relations (2nd and 4th equations) one can note
the coupling between the bending momentMy and the torque
T. The two relevant equations can be written as

κz ¼ My

ExI
þ 2η 1ð Þ

x;xs

πExI
T

ϕ ¼ 4η 1ð Þ
xs;x

πGxs J
My þ 1þ 8

π2
−1

� �
η 1ð Þ
x;xsη

1ð Þ
xs;x

� �
T

Gxs J

ð19Þ

In deriving the above relations we have used T=2πR2hτ0, J=
2I=2πR3h, and the symmetry relation ηx,xs/Ex=ηxs,x/Gxs.

Consider a cantilevered tube clamped at x=0. First we will
consider the case where the tube is subjected to a force Fz at
the tip x=L. The force is such that the line of action is through
the center of the tube. The bending moment distribution is
given by My(x)=−Fz(L−x). The tip rotation about the x-axis
can be obtained from the second of equation (14):

dψx

dx
¼ ϕ ¼ 4η 1ð Þ

xs;x

πGxs J
Fz x−Lð Þ ð20Þ

Integrating the above equation and noting ψx(0)=0 we obtain
the tip rotation ψx

F due the transverse force Fz as

ψF
x ¼ −2η 1ð Þ

xs;x

πGxs J
FzL

2 ð21Þ

From (14) the rotation ψx
T due to torque T can be derived as

ψT
x ¼ 1þ 8

π2
−1

� �
η 1ð Þ
x;xsη

1ð Þ
xs;x

� �
TL

Gxs J
ð22Þ

The location of the shear center can be derived as follows. Let
the shear center distance – distance of the shear center from the
tube axis – be denoted by ey. That is, if the transverse force Fz is
applied at the shear center it would not produce any twisting of
the tube, as the torque produced by the eccentric loading, Fzey,
would cause an angle of twist equal in magnitude but opposite
in direction to that produced by the force Fz. Then,

ψF
x ¼ −

ψT
x

T
Fzey
� �

⇒ey ¼
− ψF

x

.
Fz

� 	
ψT
x

.
T

� 	 ð23Þ
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Substituting from (16) and (17) in the above equation, the
shear center distance can be written in a non-dimensional
form as

ey
L

¼
− ψF

x

.
Fz

� 	
ψT
x

.
T

� 	
L

¼ 2η 1ð Þ
xs;x

π 1þ 8

π2
−1

� �
η 1ð Þ
x;xsη

1ð Þ
xs;x

� � ð24Þ

From (13) we note that the bending moment Mz due to a
transverse force Fy will not cause any twisting. Hence the
shear center will be on the y-axis at a distance ey from the
center of the tube.
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